
A Versatile Tool for Privacy-Enhanced Web Search

Avi Arampatzis, George Drosatos, and Pavlos S. Efraimidis

Department of Electrical and Computer Engineering
Democritus University of Thrace, Xanthi 67 100, Greece

{avi,gdrosato,pefraimi}@ee.duth.gr

Abstract. We consider the problem of privacy leaks suffered by Internet users
when they perform web searches, and propose a framework to mitigate them.
Our approach, which builds upon and improves recent work on search privacy,
approximates the target search results by replacing the private user query with
a set of blurred or scrambled queries. The results of the scrambled queries are
then used to cover the original user interest. We model the problem theoretically,
define a set of privacy objectives with respect to web search and investigate the
effectiveness of the proposed solution with a set of real queries on a large web
collection. Experiments show great improvements in retrieval effectiveness over a
previously reported baseline in the literature. Furthermore, the methods are more
versatile, predictably-behaved, applicable to a wider range of information needs,
and the privacy they provide is more comprehensible to the end-user.

1 Introduction

In 2006, AOL released query-log data containing about 21 million web queries col-
lected from about 650,000 users over three months [8]. To protect user privacy, each
real IP address had been replaced with a random ID. Soon after the release, the first
‘anonymous’ user had been identified from the data [2]. Interestingly, this identification
was made solely on the queries attributed to an anonymous ID. Even though AOL with-
drew the data a few days after the privacy breach, copies of the collection still circulate
freely online. The incident only substantiated what was already known: web search can
pose serious threats on the privacy of Internet users.

The incident has motivated lots of research in web-log anonymization and solutions
using anonymized or encrypted connections, agents, obfuscating by random additional
queries, and other techniques; for a recent extensive review on the literature, we refer
the reader to [1]. There is an important reason why all the aforementioned methods
alone might be inadequate: in all cases, the query is revealed in its clear form. Thus,
such approaches would not hide the existence of the interest at the search engine’s end or
from any sites in the network path. In addition, using anonymization tools or encryption,
the plausible deniability towards the existence of a private search task at the user’s end
is weakened. In other words, when a user employs the above technologies, the engine
still knows that someone is looking for “lawyers for victims of child rape”, and the user
cannot deny that she has a private search task which may be the aforementioned one.

A way to achieve plausible deniability was recently presented in [1], called query
scrambler, and works as follows. Given a private query, generate a set of scrambled

queries corresponding loosely to the interest, thus blurring the true intentions of the
searcher. The set of scrambled queries is then submitted to an engine in order to ob-
tain a set of result-lists called scrambled rankings. Given the scrambled rankings, it is
attempted to reconstruct, at the searcher’s end, a ranking similar to the one that the pri-
vate query would have produced, called target ranking. The process of reconstruction
is called descrambling. The scrambler employed semantically more general queries for
the private query, by using WordNet’s ontology. The key assumption was: the more gen-
eral a concept is, the less private information it conveys. Addressing privacy issues has
the inherent difficulty to define what privacy really means. Privacy is an elusive concept,
encompassing different things in different contexts and for different people [9].

The main contributions of this work are the following. In contrast to the semantic
framework used in previous work, we employ a purely statistical framework. Within this
statistical framework, we define three comprehensive privacy objectives—including the
equivalent of the privacy objective introduced in [1]. These objectives are used to define
and quantify the privacy guarantees for a given web search task. All statistics needed for
generating scrambled queries are estimated on a query-based document sample of the
remote engine [5]; consequently, the tools presented in this work are corpus-specific.
Compared to the semantic approach, our methods are found to be significantly better in
retrieval effectiveness, better defined, more versatile, predictably behaved, applicable to
a wider range of information needs, and the privacy they provide is more comprehensi-
ble to the end-user.

2 A Statistical Approach to Query Scrambling

We assume an Internet user with an information need expressed as a query for a pub-
lic web search engine like Google, Bing or Baidu. The retrieval task we focus on is
document discovery, i.e. finding documents that fulfill the information need of the user.

The Query Scrambling Problem (QSP) [1] for privacy-preserving web search is de-
fined as: Given a private query q for a web search, it is requested to obtain the related
web documents as if q had been submitted to a search engine. To achieve this, it is al-
lowed to interact with search engines, but without revealing q; the query and the actual
interest of the user must be protected. The engines cannot be assumed to be collabora-
tive with respect to user privacy. Moreover, the amount of information disclosed in the
process about q should be kept as low as possible.

Given a private query q, we identify two types of privacy-sensitive resources:

– The q itself and the corresponding information need of the user. In this work, we
use q and information need interchangeably.

– The document set matching q, given by a public search engine. An adversary mon-
itoring these results can extract significant information about the information need.

We will define two privacy primitives for web-search. Let N be the size of the docu-
ment collection, Hq the set of documents matching q, and dfq = |Hq| the document
frequency of q. Finally, let dfw,q = |Hw ∩Hq|, for any query w and q. Let us, for now,
imagine that w and q are single-term queries, so Hw and Hq are determined simply by

the document sets their terms occur in; in Secs. 3.1 and 3.2 we will see how we deal
with multi-term queries.

A popular privacy primitive is k-anonymity [10], or k-indistinghuishability, which
in the context of our work means that an adversary should not be able to come closer
than a set of k possible alternatives to the private resource. Given q, for a candidate
scrambled query w the first primitive kw is

kw =
dfw
dfw,q

, (1)

a privacy measure between the two queries based on the concept of k-indistinguishability
of the results. Note, that kw is the inverse precision of the retrieval results of w with re-
spect to the results of q. From a privacy perspective, submitting w instead of q, each of
q’s target documents is ‘hidden’ within at least kw − 1 other documents.

The second primitive gw is

gw =
dfw
N

, (2)

a measure of the generality of w. The rationale behind gw is that a general query can
be assumed to be less exposing. As an indication of how general a query is, we use a
pure statistical measure: The more documents of the collection a query hits, the more
general the query is.

Based on the above primitives we define the following privacy objectives and present
a use-case for each of them:

– Anything-But-This privacy or ABTk: Assume a researcher in academia or indus-
try who is working on some new application or product. The researcher might be
interested in searching about her new idea, but might hesitate to submit a query in a
clear form to a public search engine. Additionally, she doesn’t care about what else
will be revealed as long as it isn’t her true interest. With ABTk the researcher can
conduct a scrambled search where each scrambled query satisfies kw > k.

– Relative-Generalization privacy or RGr: A citizen might be looking for information
about some disease, but would not like to disclose the exact disease. A scrambled
search based on scrambled queries more general than q by a factor of r might serve
her need, while significantly reducing her privacy risks. Formally, RGr means that
every w must satisfy gw > r · gq .

– Absolute-Generalization privacy or AGg: Consider a citizen in some totalitarian
regime. The user might decide to scramble one or more sensitive queries, for ex-
ample about specific human rights, into queries with generality above a given user-
specified threshold. In this case, every scrambled query must satisfy gw > g.

These three privacy types may be combined, if such a privacy request arises. We will
not investigate such scenarios in this paper. Note that the minimum RG privacy (RG1)
also assures the minimum ABT privacy (ABT1) but not the other way around.

Clearly, in realistic settings, it is not be feasible to calculate the exact values of
the privacy measures defined above, since no one but the engine itself has access to
its full collection. However, we can resort to estimating the needed quantities from a
query-based document sample of the engine.

We can now model our query scrambling approach as a set covering problem [6].
More precisely, we define Scrambled Set Covering SSC(v, k, g), a multi-objective ex-
tension of set covering. Given a finite universe U of all documents of a collection, a
partition of U into sets Hq and U −Hq , and a collection S of subsets of U , the require-
ment is to find a subset C of S to satisfy the following objectives and/or constraints:

– maximize (
⋃
Hw∈C Hw)

⋂
Hq , i.e., to maximize the coverage of Hq ,

– |C| ≤ v, where v is the maximum number of scrambled queries,
– for each Hw ∈ C, the corresponding scrambled query w must satisfy kw > k,
– for each Hw ∈ C, the corresponding scrambled query w must satisfy gw > g.

For example, the SSC instance SSC(10, 2, 0.01) refers to query with 10 scrambled
queries, ABT2 and AG0.01. The same example with RG2 would be SSC(10, 2, 2 gq).

Let us give an overview of our approach for query scrambling. First, we obtain a
collection sample of size N with a query-based document sampling tool; this is done
offline, however, the sample should be updated often enough to correspond to significant
collection updates at the remote engine. In the online phase:

1. A private query q is decomposed into a set of scrambled queries. The scrambled
queries are chosen to satisfy the user-specified privacy objectives of Sec. 2. To this
end, we employ statistical information from the collection sample.

2. The scrambled queries are submitted as independent searches and all results are
collected. To avoid a reverse engineering attack, the scrambled queries should not
be linkable to each other. The user should use Tor or other anonymization tools for
the submissions, taking care to assure unlinkability between the scrambled queries.

3. The query q may be locally executed on the scrambled results (local re-indexing),
or the scrambled ranked-lists may be fused with some combination method.

The tool we propose is intended to be used in the following way: A user can install
it locally and then use it to scramble privacy-sensitive queries. It does not rely on some
trusted third party for the scrambling process.

3 Generating Scrambled Queries

For generating scrambled queries, we follow a statistical approach using a local doc-
ument sample of the remote search engine. So far, for simplicity, we have assumed
single-term private and scrambled queries. In Secs. 3.1 and 3.2, we will see how we
can generalize the methods to work with multi-term queries. As soon as we generate a
set of candidate scrambled queries, these are filtered for privacy according to the mea-
sures defined in Sec. 2. The remaining candidates are ranked according to their expected
retrieval effectiveness, described in Sec. 3.3, before they are submitted.

3.1 Dealing with Multi-term Private Queries

If q is a single-term query, then its document frequency dfq can be determined directly
from the document sample. The question is how to treat a multi-term q, or else, what the

dfq of such a query is and which subset of dfq documents will be assumed as matching
q so we can harvest from it related terms to be used as scrambled queries.

Given dfq , the question of which subset of documents is matching q can be settled
as: we rank the sample documents with respect to q using some best-match retrieval
model and ORed q, and take the top-dfq documents. We determine the threshold dfq
by submitting the ANDed q to the collection sample and count the number of results,
enforcing a minimum of 1 for practical reasons. We will refer to this estimate of dfq as
aDF. The maximum number of results an ANDed query can retrieve is mini dfi when
i is a term of the query; we will refer to such an estimate of dfq as mDF. This happens
when the query term with the least df is 100% positively correlated with all other query
terms. The term with the least df is also the most informative: if we were to reduce a
multi-term q to a single term, this is the term we would keep. In this respect, dfq cannot
be larger than mDF in any case.

While aDF may be too restrictive especially for a long q, mDF may be too ‘loose’
especially if q contains high frequency common terms. So, we will employ both aDF
and mDF for estimating dfq . From a retrieval perspective, it is easier to create scrambled
queries to retrieve smaller sets of documents, thus, using aDF makes the task easier than
using mDF. From a privacy perspective, mDF is the largest df possible so it is safer. For
example let us consider the information need represented by the query “big bad wolf”.
Using aDF will point to documents about the “Little Red Riding Hood” fairy tale, while
using mDF will point to all documents referring to wolves including the fairy tale. Since
aDF’s target set is smaller, it can be easier retrieved by scrambled queries. But using
mDF instead corresponds to trying to hide all wolves.

3.2 Generating Multi-term Scrambled Queries

For single-term scrambled queries, dfw can be determined directly from the document
sample. However, we can also generate multi-word scrambled queries. The question is
how to treat these, or else, what the dfw of such a scrambled query is and which subset
of dfw sample documents will be assumed as occurring in.

From the documents matching q, we enrich the set of candidate scrambled single-
term queries by using a sliding window of length W and generating all unique un-
ordered combinations of 2 and 3 terms. We use a window instead of whole documents
so as to limit the number of combinations; currently, we set W = 16 which was shown
in past literature to perform best in ensuring some relatedness between terms [11] (see
also Sec. 3.3). We limit the scrambled query length to 3, which also helps to keep the
number of combinations practically manageable. In this procedure, we exclude all stop-
words except those occurring in q.

The document set hit by such a scrambled query is estimated similarly to the method
of aDF described in Sec. 3.1: The ORed scrambled query is submitted to the sample and
the top-dfw documents are considered matching, where dfw is the number of documents
matching the ANDed scrambled query. The choice of aDF over mDF is made purely on
targeting the best privacy. aDF produces lower dfw estimates than mDF, so these queries
will be removed earlier as g increases. Also, using aDF implies that queries are more
targeted, achieving higher precision, so they will be removed earlier as k increases.

3.3 Ranking Scrambled Queries

After dropping candidate scrambled queries that violate any privacy criteria on kw and
gw, the remaining queries should be ranked according to their expected retrieval quality
with respect to the document set matching the query, i.e. the target set. For example,
we can measure this quality in terms of precision and recall, and combine those in one
number such as the Fβ-measure [7]. Although Fβ is suitable for our purpose, it has not
been commonly used before for detecting the best related terms.

Topically-related terms can be ranked via several methods; a common one is by
computing pointwise mutual information (PMI) using large co-occurrence windows [4].
For the task at hand, it is appropriate to consider whole documents as windows, and
score each w co-occurring with q as

PMIw = log
P (q, w)

P (q)P (w)
= logN

dfq,w
dfq dfw

(3)

where P (q, w) is the probability of q and w co-occurring in a document, and P (q),
P (w), the probabilities of occurrence of q, w, in a document, respectively. Using a
large corpus and human-oriented tests, [11] did a comprehensive study of a dozen word
similarity measures and co-occurrence estimates. From all combinations of estimates
and measures, document retrieval with a maximum window of 16 words and PMI (run
tagged DR-PMI16) performed best on average.

Although PMI has been widely used in computational linguistics literature, classi-
fication, and elsewhere, it has a major drawback in our task. Removing constant factors
from Eq. 3, which do not affect the relative ranking of terms for a given q and collec-
tion, PMI ranks terms identically to the ratio: dfq,w/dfw. Considering this ratio, an 1/1
term is ranked higher than a 9/10 term although the latter is clearly a better term from
a retrieval perspective leading to a better recall; moreover, the former may be some ac-
cidental/spurious match. Or else, the PMI of perfectly correlated terms is higher when
the combination is less frequent. This low-frequency bias may not undesirable for some
tasks (e.g. collocation extraction), but it is in our case due to our high precision and
recall preference. A workaround is instead to use a normalized version of PMI such as
NPMI [3], which divides PMI by − logP (q, w), reducing some of the low frequency
bias but not all. In any case, our task—while related—is not exactly a linguistic simi-
larity one, where PMI works well in finding synonyms for TOEFL synonym tests [11],
or collocation identification, where NPMI works well [3].

Our task seems more related to scoring features for feature selection in classifica-
tion. [12] review feature selection methods and their impact on classification effective-
ness. They find that PMI (which confusingly they refer to as just MI) is not competitive
with other methods, and that the best methods are the χ2-statistic and the expected
mutual information (MI) [7, Ch. 13.5.1, Eq. 13.17] (which they refer to as informa-
tion gain) with similar effectiveness. Still, our task is different than a straightforward
term selection for classification. In classification, all selected terms are intended to be
used simultaneously in order to classify a new object. Here, we use selected terms as
queries one by one in order to cover the target set of documents. Beyond query volume,
other parameters such as the number of documents retrieved per related query and the
cardinality of the target document set may impact the effectiveness of the procedure.

All in all, since our task is different than determining linguistic similarity or feature
selection, it makes sense to evaluate again some common term similarity measures and
feature selection methods, as well as some uncommon ones, in this context.

4 Evaluation

In order to evaluate the effectiveness of the scrambler and how its retrieval quality trades
off with scrambled query volume (v) and scrambling intensity (k or g) over the different
privacy types (ABT/RG/AG) and methods (aDF/mDF), we set up an offline experiment.
For comparison purposes, we re-constructed the set-up of [1] as close as possible.

4.1 Datasets, Tools and Methods

The private query dataset is available online1 and consists of 95 queries selected in-
dependently by four human subjects from various query-logs [1]. As a document col-
lection, we used the ClueWeb09 B dataset consisting of the first 50 million English
pages of the ClueWeb09 dataset. The dataset was indexed with the Lemur Toolkit, Indri
V5.2, using the default settings, except that we enabled the Krovetz stemmer. We used
the baseline language model for retrieval, also with the default smoothing rules and
parameters. This index and retrieval model simulate the remote web search engine.

We took a document sample of the remote collection using random queries similarly
to [5]. We bootstrapped the procedure with the initial query “www”. At each step, the
procedure retrieves the firstK results of the random query and adds them to the sample;
we set K = 1. Previous research has shown that the choice of the initial query is not
important and that K = 1 is best suited for heterogeneous collections such as the
web. Then, a term is uniformly selected from the unique terms of the current sample
and used as the next random query until the desired sample size is reached. Candidate
terms are at least 3 characters long and cannot be numbers. After initial experiments
we decided to use a sample of 5,000 documents which provides a good compromise
between effectiveness and practical feasibility. We used the same types of indexing and
retrieval model for the sample as for the remote engine.

In initial experiments we compared PMI, NPMI, MI, F1, F2 and centroid weight,
and found that MI and centroid weight work best for the task of ranking scrambled
queries. Fβ with β = 2, i.e. weighing recall twice to precision, is slightly behind but
competitive; the F-measure however requires an extra parameter (β). NPMI works bet-
ter than PMI, but both are left quite behind. We will not present these results for space
reasons, and will stick with MI.

We targeted the top-50 documents of the remote engine. Our local sample was so
small in relation to the engine’s collection that all target documents corresponded to
less than 1 document in the sample. In this respect, in order to improve the focus of the
scrambled queries, it makes sense to harvest those from a set of sample documents of
a smaller cardinality than dfq . In initial experiments we found that a good compromise
between focus and reasonably good statistics of document frequencies is to take the

1 http://lethe.nonrelevant.net/datasets/95-seed-queries-v1.0.txt

http://lethe.nonrelevant.net/datasets/95-seed-queries-v1.0.txt

top-df ′q sample documents returned by q, where df ′q = min(10,dfq), i.e. we harvested
scrambled queries from the at most top-10 sample documents. Also, we adjusted df ′w
and df ′q,w to the new set and calculated MI using these numbers instead; this was found
to improve retrieval effectiveness. Of course, the privacy constraints were applied to the
unmodified frequencies as described in Sec. 2.

Concerning the evaluation measures, we simplified the matters in relation to [1]
where scrambled rankings were fused via several combination methods and the fused
ranking was evaluated against the target one via Kendall’s τ and a set intersection met-
ric. The fusion methods tried in the previous study were deemed weak in comparison
to a local re-indexing approach, i.e. index locally the union of top-1000 documents re-
trieved by all scrambled queries and run the private query against the local index in
order to re-construct the target ranking. Nevertheless, even with local re-indexing the
ceiling of achievable performance was not reached: there were quite a few target doc-
uments retrieved by scrambled queries that could not be locally ranked in the top-50.
This was attributed to having biased DF statistics in the local index. The experimental
effort in the aforementioned study concluded with a bare experiment evaluating only
the number of target top-50 documents found by the union of the top-1000 documents
retrieved by all scrambled queries. This allowed to remove the effect of de-scrambling
and evaluate only the quality of scrambling; this is what we will also do.

4.2 Results

The two left-most columns of Table 1, marked as ‘unfiltered’, show results with no
privacy; these can be considered as the ceiling of achievable performance when de-
composing a user query q with the current methods. Even with no privacy, we do not
get 50 out of 50 target documents because there are cases where we cannot exactly
reproduce q from the sample for the following reasons. First, a term of q may not occur
in the sample, e.g. ‘chamblee’ from “definition of chamblee cancer”. However, such
a term may occur in the remote collection. Second, the terms of a multi-term q, e.g.
‘definition’, ‘chamblee’, and ‘cancer’, may not occur within a window of 16 terms in
sample documents. Third, we generate scrambled queries only up to 3 terms. All these
already suggest future improvements: use larger samples, use larger or no windows at
all but whole documents, and generate longer scrambled queries.

Table 1. ABT privacy, top-50 target documents found by the top-v scrambled queries.

unfiltered k = 1 k = 2 k = 4 k = 8 k = 16
v aDF mDF aDF mDF aDF mDF aDF mDF aDF mDF aDF mDF
2 30.1 34.2 28.6 30.3 19.9 12.1 11.8 5.05 7.49 2.02 3.57 1.13
10 36.2 39.6 35.3 37.5 30.9 23.6 22.8 11.2 15.6 5.13 8.33 2.41
50 40.8 44.2 40.2 42.5 37.3 33.1 31.8 19.3 23.7 10.8 14.2 5.25

Table 1 also shows results for ABT privacy. The minimum privacy (k = 1) removes
only scrambled queries which occur in all documents of the sample target set. This
has a larger impact to a single-term q which may loose its 50 out 50 effectiveness.

The table also shows that for light or no privacy requirements mDF works better than
aDF; this happens because the sample target set of mDF is larger than this of aDF, so
more scrambled queries are harvested/generated leading to better results. However, the
effectiveness of mDF degrades faster than aDF as k increases, so aDF works better,
as expected and explained in Sec. 3.1. For large k (e.g. for k ≥ 2), the effectiveness
of mDF roughly halves for every doubling of k, suggesting a linear relation in log-log
space or a power-law.

Table 2. Top-50 target documents found, RG privacy (left), AG privacy (right).

g = gq g = 2 gq g = 4 gq g = 8 gq
v aDF mDF aDF mDF aDF mDF aDF mDF
2 22.1 13.5 19.9 8.17 12.6 4.33 7.35 1.65

10 31.1 21.2 31.4 12.6 22.1 6.83 13.3 3.42
50 38.3 28.6 36.1 19.2 28.9 10.3 20.1 6.28

g = .0064 g = .0128 g = .0256 g = .0512
v aDF mDF aDF mDF aDF mDF aDF mDF
2 13.7 5.22 13.5 6.82 9.29 5.40 7.80 4.83
10 21.2 11.4 21.8 11.8 15.9 12.3 11.7 7.79
50 28.0 17.1 26.5 19.0 23.1 18.0 16.0 11.4
#q 69 27 82 44 87 63 94 81

Table 2 shows results for RG (left) and AG privacy (right). Using mDF, RG effec-
tiveness roughly halves for every doubling of generalization, suggesting again a power-
law. Concerning AG privacy, the g values shown correspond to document frequency
cut-offs of 32, 64, 128 and 256 in the current sample size. If a private query is already
general enough for a g value, it is not scrambled since it has no privacy issues. Such
queries are excluded from the average results of the right table. The numbers of private
queries scrambled per g value and choice of aDF/mDF are shown in the last row (#q).
The effectiveness of mDF is similar for the first three small g cut-offs but then falls off.
In other words, we can generalize private queries relatively well by using scrambled
queries hitting up to 2.5% sample documents. At such an AG level, 66% (63 out of 95)
of the private query dataset is deemed as not general enough so it is scrambled. Again,
the aDF method is much better than mDF in all cases, providing a less steep decrease
in effectiveness as generalization increases.

The fact that aDF is more effective than mDF in all privacy types when more than
light privacy is required, does not mean that it should be the preferred method. As we
noted in Sec. 3.1, mDF represents stricter privacy than aDF which is experimentally
proved to trade off with retrieval effectiveness. The final choice between aDF/mDF
should be left to the end-user or determined via a user-study.

Concerning scrambled query volume, in all privacy types and methods effectiveness
increases with higher volumes. However, due to the nature of the experimental setup,
we see diminishing returns as effectiveness gets closer to 50 documents. At high pri-
vacy levels where effectiveness suffers, we can see roughly a doubling of effectiveness
for every fivefold increase in volume, i.e. another power-law albeit a very steep one
suggesting that a few dozens of scrambled queries are enough.

4.3 A Comparison to Semantic Query Scrambling

The previous literature dealt only with RG privacy, so we will compare our RG method
and results to it. The best effectiveness reported by [1] is 12.7, obtained at low volume

(i.e. as many scrambled queries as can be produced up to 10) and low scrambling by
averaging the results for 94 of the 95 user queries. One query did not produce any scram-
bled queries at low scrambling. At higher volume, ironically, effectiveness slightly de-
creased, an effect we attribute to averaging only the 55 user queries having numbers of
low-scrambled queries in the 26–50 range. Effectiveness decreased fast—below 10 and
even 5 documents—at medium or high scrambling.

The most obvious problems of the semantic approach are the following. First, not
all user queries can be scrambled at a requested scrambling intensity, due to WordNet’s
ontology being generic thus not ‘dense’ enough. The problem seems severe: at high
scrambling, only 58 out of the 95 user queries had at least 1 scrambled query. Second,
the levels of low/medium/high scrambling were defined by taking arbitrary ranges of
values of some semantic similarity measure between each scrambled query and q. Thus,
scrambling intensity is difficult to be explained to the end-user: how much exposing is
a scrambled query with, say, 0.8 similarity to q?

Our statistical approach does not have the problems of the semantic. First, we al-
ways seem to produce enough scrambled queries. This may not be the case for very
small document samples, but it does hold for our—reasonably small—5,000 sample.
Second, our approach to RG can easier be explained to the end-user: the information
need expressed by a scrambled query is satisfied by at least X times more documents
than her private query. This can give her a better idea on how much she is exposed, in
contrast to giving her a raw similarity threshold as in the semantic approach.

Moreover, we seem to get much better effectiveness. Although the two approaches
are not directly comparable due to the weak definitions of low/medium/high scrambling
of the semantic approach, comparing the methods at minimum scrambling (i.e. low
scrambling vs. g = gq) at volume 10 we see improvements of +145% or +67% (12.7
vs. 31.1 with aDF or 21.2 with mDF. Nevertheless, we should investigate which levels
of privacy are roughly comparable across the two approaches.

Table 3. Top-10 RG scrambled queries for private query ‘gun racks’ and # of target docs found.

low scrambling medium scrambling mDF, g = gq mDF, g = 2gq aDF, g = 8gq
weapon system support device support light replacement air power air power

weapon support instrument device gun light 39 light power light power
arm support weapon system instrumentation air book cover weight weight

instrument support weapon system instrumentality electric light machine accessory accessory
weapon system device weapon instrumentation pull machine power machine power

weapon device weapon instrumentality air kit light supply light model
arm device arm instrumentation air cover 22 light fire light

— arm instrumentality air gun home 3 cover picture gun 40
— device device light pump light model trailer
— instrument instrumentation brake fire light air picture
0 0 39 0 40

Let us attempt a comparison of RG at the minimum level, as well as, at levels of
the statistical approach which result to around 12.7 target documents on average for
volume 10, according to Table 2. For the user query “gun racks”, Table 3 compares the
scrambled queries resulting from the semantic approach (the two left-most columns of

Table 3 are taken from a table appearing in [1]) against the scrambled queries of the
statistical approach. The semantic approach is capable of generating only 7 scrambled
queries at low scrambling but 10 at medium scrambling. None of the scrambled queries
hit any of the target documents at any scrambling intensity. A bold number next to a
query is the number of target results hit (if any), while the last row shows the number of
distinct target results hit by all scrambled queries per column. The statistical approach
achieves good results (above the 12.7 average) in two out of three cases. Nevertheless,
it seems difficult to decide where the methods stand privacy-wise: is “weapon support”
less exposing than “gun light” or just “gun”? In our opinion, the user should have the
last word on this by reviewing the set of scrambled queries before submission.

All in all, using the strictest privacy provided by mDF, we roughly matched or im-
proved the best retrieval result of the semantic approach, for k up to 4 and g up to 2gq
or 2.5% at volume 10, and for k up to 8 and g up to 4gq or 5% at volume 50. At lighter
privacy requirements, we outperformed the semantic approach by far. In all cases, our
methods managed to scramble all private queries where this was needed, in contrast to
the semantic approach. Moreover, we detected power-law relations between the privacy
levels and retrieval effectiveness of ABT and AG, as well as, between volume and re-
trieval effectiveness. Thus, our methods are more well-defined and easier explained to
the end-user, can be applied to a wider-range of private information needs, are more
effective and behave predictably, retrieval-wise.

Last, there are two other advantages of our approach over the semantic one. First,
in the semantic approach the user had to manually select the part-of-speech and sense
of every term in her query in order to select the right node in WordNet’s ontology. The
statistical approach does not require these time-consuming steps. Second, [1] arrived at
the conclusion that the best method to de-scramble ranked-lists is to locally re-index
the union of documents hit by all scrambled queries and run q against this local index.
Nevertheless, even with local re-indexing the ceiling of achievable performance was
not reached: there were quite a few target documents retrieved by scrambled queries
that could not be locally ranked in the top-50. This was attributed to having biased DF
statistics in the local index due to the fact that the local documents represented a far
from uniform collection sample: they were all retrieved by a set of semantically-related
scrambled queries. The document sample used by our approach is more representa-
tive of the remote collection, so its DF statistics can be used in the local re-indexing
approach removing most of the bias.

5 Conclusion

We introduced a method for search privacy on the Internet, which is orthogonal to—and
should be combined with— standard methods such as using anonymized connections,
agents, obfuscating by random additional queries or added keywords, and other tech-
niques reducing private information leakage. The method enhances plausible deniability
towards query-logs by employing alternative less-exposing queries for a private query.
We defined and modeled theoretically three types of privacy, providing a framework on
which similar approaches may be built in the future.

In contrast to previous literature, we followed a statistical approach which does
not use word/concept ontologies, semantic analysis or natural language processing. We
investigated the practical feasibility of the proposed method and the trade-off between
quality of retrieved results and privacy enhancement. In [1], the best result was 25%
of the top-50 target documents found, and was achieved at the lightest possible privacy
requirements; our method can match this at higher-than-minimum privacy levels and for
more and better-defined privacy types which can easier be explained to the end-user. At
our lightest privacy level, our method outperforms the semantic one by far; we retrieve
up to 56–76% of the target results. Moreover, our method can be applied to a wider
range of information needs and performs more predictably retrieval-wise.

Privacy is an elusive concept. While it is easy to evaluate the retrieval effectiveness
of our methods, it is difficult to evaluate the actual privacy perceived by the end users.
We investigated our approach in a system-study; it should also be investigated in a user-
study in order to determine the levels of privacy trade-offs users find acceptable.

Acknowledgments

The research leading to these results has received funding from the E.U. 7th Framework Pro-
gramme [FP7/2007-2013] under grant agreement no 264226: SPace Internetworking CEnter—
SPICE. This paper reflects only the views of the authors—The Union is not liable for any use that
may be made of the information contained.

References

1. Arampatzis, A., Efraimidis, P., Drosatos, G.: Enhancing deniability against query-logs. In:
ECIR. LNCS, vol. 6611, pp. 117–128. Springer (2011)

2. Barbaro, M., Zeller, T.: A Face Is Exposed for AOL Searcher No. 4417749 (2006 (accessed
June 3, 2010)), http://www.nytimes.com/2006/08/09/technology/09aol.html

3. Bouma, G.: Normalized (pointwise) mutual information in collocation extraction. In: GSCL.
pp. 31–40. Tbingen: Gunter Narr Verlag (2009)

4. Brown, P.F., Pietra, V.J.D., de Souza, P.V., Lai, J.C., Mercer, R.L.: Class-based n-gram mod-
els of natural language. Computational Linguistics 18(4), 467–479 (1992)

5. Callan, J.P., Connell, M.E.: Query-based sampling of text databases. ACM Trans. Inf. Syst.
19(2), 97–130 (2001)

6. Caprara, A., Toth, P., Fischetti, M.: Algorithms for the set covering problem. Annals of Op-
erations Research 98, 353–371 (2000)

7. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to information retrieval. Cambridge
University Press (2008)

8. Pass, G., Chowdhury, A., Torgeson, C.: A picture of search. In: InfoScale. ACM (2006)
9. Solove, D.J.: Understanding Privacy. Harvard University Press (2008)

10. Sweeney, L.: k-Anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness
Knowl.-Based Syst. 10(5), 557–570 (2002)

11. Terra, E.L., Clarke, C.L.A.: Frequency estimates for statistical word similarity measures. In:
NAACL-HLT. pp. 165–172. ACL (2003)

12. Yang, Y., Pedersen, J.O.: A comparative study on feature selection in text categorization. In:
ICML. pp. 412–420. Morgan Kaufmann (1997)

	A Versatile Tool for Privacy-Enhanced Web Search

